Fonctions réelles de deux variables réelles

23.1 Généralités

23.1.1 Définition

Définition 1: Fonctions réelles de deux variables réelles

On appelle fonction réelle de deux variables réelles toute fonction f définie sur un domaine $D \subset \mathbb{R}^2$ et à valeurs dans \mathbb{R} . On note

$$\begin{array}{ccc} f:D & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & f(x,y). \end{array}$$

Exemple 1. • Les fonctions polynomiales à deux variables sont définies sur \mathbb{R}^2 tout entier, par exemple $f(x,y) = 3x^3y + x^2y^2 - xy^4 + y - 1$.

- Certaines fonctions sont définies sur des demi-plans, par exemple $f:(x,y) \longmapsto \ln(x) + y$ est définie sur $D = \mathbb{R}_+^* \times \mathbb{R}$, qui est le demi-plan supérieur du plan \mathbb{R}^2 (privé de l'axe des abscisses).
- Certaines fonctions sont définies sur des pavés de la forme $[a,b] \times [c,d]$, par exemple la fonction $f:(x,y)\longmapsto \sqrt{1-x^2}+\arccos(y)$ est définie sur $\mathcal{D}=[-1,1]^2$.
- Certaines fonctions sont définies sur des disques, par exemple la fonction $f:(x,y) \mapsto \sqrt{1-x^2-y^2}$ est définie sur le disque de centre (0,0) et de rayon 1.

23.1.2 Surface représentative et courbes de niveau

Définition 2: Surface représentative

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit $f: \mathcal{D} \longrightarrow \mathbb{R}$ une fonction de deux variables réelles. On appelle surface représentative de f la surface

$$\mathcal{S}_f = \{(x, y, z) \in \mathbb{R}^3 | (x, y) \in \mathcal{D} \text{ et } z = f(x, y)\} \subset \mathbb{R}^3.$$

Définition 3: Courbes de niveau

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit $f : \mathcal{D} \longrightarrow \mathbb{R}$ une fonction de deux variables réelles. Soit $k \in \mathbb{R}$. On appelle courbe (ou ligne) de niveau k de f l'ensemble

$$C_k = \{(x, y) \in \mathcal{D} | f(x, y) = k\}.$$

Remarque 1. Pour tout $k \in \mathbb{R}$, $C_k \times \{k\}$ est l'intersection de S_f avec le plan d'équation z = k.

23.1.3 Fonctions partielles

Définition 4: Fonctions partielles

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit

$$f: \begin{array}{ccc} \mathcal{D} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto & f(x,y) \end{array}$$

une fonction de deux variables réelles.

Pour tout $(x_0, y_0) \in \mathcal{D}$, on appelle première fonction partielle en (x_0, y_0) la fonction

$$f_{y_0}: x \longmapsto f(x, y_0)$$

et deuxième fonction partielle en (x_0, y_0) la fonction

$$f_{x_0}: y \longmapsto f(x_0, y).$$

Remarque 2. • La courbe de la première fonction partielle de f en (x_0, y_0) s'obtient en intersectant la surface représentative de la fonction f avec le plan d'équation $y = y_0$.

• La courbe de la deuxième fonction partielle de f en (x_0, y_0) s'obtient en intersectant la surface représentative de la fonction f avec le plan d'équation $x = x_0$.

23.2 Continuité

23.2.1 Continuité en un point

Définition 5: Continuité en un point d'une fonction de deux variables

Soit $\mathcal{D} \subset \mathbb{R}^2$.

Soit $f: \mathcal{D} \longrightarrow \mathbb{R}$ une fonction de deux variables réelles.

• Soit $(a, b) \in \mathcal{D}$. On dit que f est continue en (a, b) si pour tout couple de suites réelles $((a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}})$ telles que $\lim_{n\to+\infty} a_n = a$ et $\lim_{n\to+\infty} b_n = b$ alors

$$\lim_{n \to +\infty} f(a_n, b_n) = f(a, b).$$

• La fonction f est continue sur \mathcal{D} si elle est continue en tout point $(a,b) \in \mathcal{D}$.

Remarque 3. En utilisant les résultats sur les suites, on montre que toute combinaison linéaire, produit, quotient, composée d'applications continues est continue.

Exemple 2. • Toutes les fonctions polynomiales en les deux variables (x, y) sont continues sur \mathbb{R}^2 . Par exemple, la fonction

$$f:(x,y)\longmapsto x^3y^2+2xy-x+4$$

est continue sur \mathbb{R}^2 .

• La fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

n'est pas continue en (0,0).

Considérons les suites $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ définies pour tout $n\in\mathbb{N}^*$ par $a_n=b_n=\frac{1}{n}$. On a bien $\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}b_n=0$.

Pour tout $n \in \mathbb{N}^*$, on a $f(a_n, b_n) = \frac{\frac{1}{n^2}}{\frac{n^2}{n^2}} = \frac{1}{2}$.

Ainsi, $\lim_{n\to+\infty} f(a_n,b_n) = \frac{1}{2} \neq 0 = f(0,0)$, ce qui prouve que la fonction f n'est pas continue en (0,0).

En revanche, elle est continue en tout point $(x, y) \neq (0, 0)$.

23.3 Dérivées partielles d'une fonction de deux variables

23.3.1 Dérivées partielles et gradient

Définition 6: Dérivées partielles

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit $f: \begin{array}{ccc} \mathcal{D} & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto & f(x,y) \end{array}$ une fonction de deux variables réelles.

Pour tout $(x_0, y_0) \in \mathcal{D}$, on considère les fonctions partielles $f_{y_0} : x \longmapsto f(x, y_0)$ et $f_{x_0} : y \longmapsto f(x_0, y)$.

• On dit que f admet une dérivée partielle par rapport à la première variable en (x_0, y_0) si la première fonction partielle f_{y_0} est dérivable en x_0 et dans ce cas, on note

$$\frac{\partial f}{\partial x}(x_0, y_0) = f'_{y_0}(x_0).$$

• On dit que f admet une dérivée partielle par rapport à la deuxième variable en (x_0, y_0) si la deuxième fonction partielle f_{x_0} est dérivable en y_0 et dans ce cas, on note

$$\frac{\partial f}{\partial y}(x_0, y_0) = f'_{x_0}(y_0).$$

Remarque 4. • Supposons que f admette des dérivées partielles en un point (x_0, y_0) . On a alors par définition

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \quad \text{et} \quad \frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

ou encore

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} \quad \text{et} \quad \frac{\partial f}{\partial y}(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

- Pour calculer $\frac{\partial f}{\partial x}(x,y)$ en un point $(x,y) \in \mathbb{R}^2$, on dérive f(x,y) par rapport à x en traitant y comme une constante.
- Pour calculer $\frac{\partial f}{\partial y}(x,y)$ en un point $(x,y) \in \mathbb{R}^2$, on dérive f(x,y) par rapport à y en traitant x comme une constante

Exemple 3. Soit
$$f:(x,y)\longmapsto x^2y^3+3yx-x$$
 pour tout $(x,y)\in\mathbb{R}^2$.
Pour tout $(x,y)\in\mathbb{R}^2$, on a $f_y'(x)=2xy^3+3y-1$ et $f_x'(y)=3x^2y^2+3x$.
Ainsi, pour tout $(x,y)\in\mathbb{R}^2$, $\frac{\partial f}{\partial x}(x,y)=2xy^3+3y-1$ et $\frac{\partial f}{\partial y}(x,y)=3x^2y^2+3x$.
En particulier, on a $\frac{\partial f}{\partial x}(1,-1)=-6$ et $\frac{\partial f}{\partial y}(1,-1)=6$.

Remarque 5. Si f admet des dérivées partielles en un point (x_0, y_0) , alors pour h et k proches de 0, on a

$$f(x_0 + h, y_0 + k) = \int_{(0,0)} f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|).$$

Définition 7: Gradient

Soit $\mathcal{D} \subset \mathbb{R}^2$, soit $f : \mathcal{D} \longrightarrow \mathbb{R}$. Soit $(x_0, y_0) \in \mathcal{D}$ tel que la fonction f admette des dérivées partielles au point (x_0, y_0) .

On appelle gradient de f au point (x_0, y_0) le vecteur

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) \\ \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}.$$

Remarque 6. Si (x_0, y_0) est situé sur la courbe de niveau k, alors le gradient $\nabla f(x_0, y_0)$ est orthogonal à la ligne de niveau k et orienté dans le sens des valeurs croissantes de f.

23.3.2 Fonctions de classe C^1

Définition 8

Soit $\mathcal{D} \subset \mathbb{R}^2$. Soit $f: \mathcal{D} \longrightarrow \mathbb{R}$.

On dit que f est de classe \mathcal{C}^1 sur \mathcal{D} si f admet des dérivées partielles continues en tout point de \mathcal{D} .

Exemple 4. La fonction f de l'exemple précédent est une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Proposition 1: Règle de la chaîne

Soit I un intervalle de \mathbb{R} , soient $x, y : I \to \mathbb{R}$ des fonctions dérivables sur I. Soit $f : \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathcal{D} . On suppose que pour tout $t \in I$, $(x(t), y(t)) \in \mathcal{D}$. Alors la fonction $g : t \longmapsto f(x(t), y(t))$ est de classe \mathcal{C}^1 sur I et pour tout $t \in I$, on a

$$g'(t) = \frac{\partial f}{\partial x}(x(t), y(t))x'(t) + \frac{\partial f}{\partial y}(x(t), y(t))y'(t).$$

Démonstration.

Admise.

Exemple 5. Soient $x: t \longmapsto \cos(t)$ et $y: t \longmapsto \sin(t)$ deux fonctions dérivables sur \mathbb{R} . Soit $f: (x,y) \longmapsto x^2y + 3xy - y$ une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 . On a pour tout $(x,y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial x}(x,y) = 2xy + 3y$$
 et $\frac{\partial f}{\partial y}(x,y) = x^2 + 3x - 1$.

Pour tout $t \in \mathbb{R}$, on pose g(t) = f(x(t), y(t)). D'après la règle de la chaîne, g est de classe C^1 sur \mathbb{R} et on a pour tout réel t:

$$g'(t) = \frac{\partial f}{\partial x}(x(t), y(t))x'(t) + \frac{\partial f}{\partial y}(x(t), y(t))y'(t)$$
$$= -2\cos(t)\sin^2(t) - 3\sin^2(t) + \cos^3(t) + 3\cos^2(t) - \cos(t).$$

Année 2024-2025 4 / 7 Alex Panetta

23.3.3 Point critique

Définition 9: Extrema

Soit $f: \mathcal{D} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$. Soit $(x_0, y_0) \in \mathcal{D}$.

 \bullet On dit que (x_0, y_0) est un minimum de f sur \mathcal{D} si

$$\forall (x,y) \in \mathcal{D}, f(x,y) \geqslant f(x_0, y_0).$$

• On dit que (x_0, y_0) est un maximum de f sur \mathcal{D} si

$$\forall (x,y) \in \mathcal{D}, f(x,y) \leqslant f(x_0,y_0).$$

• On dit que (x_0, y_0) est un extremum de f sur \mathcal{D} si (x_0, y_0) est un maximum ou un minimum de f sur \mathcal{D} .

Définition 10: Point critique

Soit $f: \mathcal{D} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$. On suppose que f admet des dérivées partielles en tout point de \mathcal{D} .

Soit $(x_0, y_0) \in \mathcal{D}$.

On dit que (x_0, y_0) est un point critique de f si

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0.$$

Remarque 7. De façon équivalente, (x_0, y_0) est un point critique de f si $\nabla f(x_0, y_0) = 0$.

Théorème 1: Condition nécessaire d'extrémalité sur un pavé ouvert

Soit $\mathcal{D} =]a, b[\times]c, d[$ un pavé ouvert non vide de \mathbb{R}^2 .

Soit $f: \mathcal{D} \longrightarrow \mathbb{R}$. On suppose que f admet des dérivées partielles en tout point de \mathcal{D} .

Soit (x_0, y_0) un extremum de f sur \mathcal{D} .

Alors (x_0, y_0) est un point critique de f.

Démonstration. • Soit $f_{y_0}:]a,b[\longrightarrow \mathbb{R}$ la première fonction partielle de f. Par hypothèse, f_{y_0} admet un extremum en $x_0 \in]a,b[$. Puisque]a,b[est ouvert, ceci implique que $f'_{y_0}(x_0) = 0$, i.e. $\frac{\partial f}{\partial x}(x_0,y_0) = 0$.

 $f'_{y_0}(x_0) = 0$, i.e. $\frac{\partial f}{\partial x}(x_0, y_0) = 0$.

• Soit $f_{x_0}:]c, d[\longrightarrow \mathbb{R}$ la deuxième fonction partielle de f. Par hypothèse, f_{x_0} admet un extremum en $y_0 \in]c, d[$. Puisque]c, d[est ouvert, ceci implique que $f'_{x_0}(y_0) = 0$, i.e. $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Ainsi,
$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$
 donc (x_0, y_0) est un point critique de f .

Exemple 6. Soit $\mathcal{D} =]-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}[\times]-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}[$. Soit $f:(x,y)\longmapsto \sqrt{1-x^2-y^2}$ définie sur le pavé ouvert \mathcal{D} .

Pour tout $(x,y) \in \mathcal{D}$, $f(x,y) \leq 1 = f(0,0)$ donc (0,0) est un maximum de f sur \mathcal{D} . D'après le théorème précédent, (0,0) est un point critique de f.

En effet, on a pour tout $(x, y) \in \mathcal{D}$,

$$\frac{\partial f}{\partial x}(x,y) = -\frac{x}{\sqrt{1 - x^2 - y^2}} \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = -\frac{y}{\sqrt{1 - x^2 - y^2}}$$

donc $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0.$

Remarque 8. • C'est une condition nécessaire mais pas suffisante.

En effet, soit $f:(x,y) \mapsto x^2 - y^2$. La fonction f est de classe \mathcal{C}^1 sur \mathbb{R}^2 et on a pour tout $(x,y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial x}(x,y) = 2x$$
 et $\frac{\partial f}{\partial y}(x,y) = -2y$.

Le seul point critique de f est alors (x,y)=(0,0) mais ce n'est pas un extremum de f car f(0,0)=0 mais

$$\lim_{x \to +\infty} f(x,0) = +\infty \quad \text{et } \lim_{y \to +\infty} f(0,y) = -\infty.$$

• Le résultat n'est plus forcément vrai si on n'est pas sur un pavé ouvert.

Soit $\mathcal{D} = [0,1] \times [0,1]$. Soit f définie sur \mathcal{D} par f(x,y) = x + y.

Alors le point (0,0) est un minimum de f mais $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 1$.

23.4 Dérivées partielles d'ordre deux

23.4.1 Dérivées partielles d'ordre deux

Définition 11: Dérivées partielles d'ordre deux

Soit $f: \mathcal{D} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$.

On dit que f est de classe \mathcal{C}^2 sur \mathcal{D} si f est de classe \mathcal{C}^1 sur \mathcal{D} et si les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont de classe \mathcal{C}^1 sur \mathcal{D} .

Dans ce cas, on note

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right); \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right); \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right); \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right).$$

Ces fonctions sont les dérivées partielles d'ordre 2 de f.

23.4.2 Théorème de Schwarz

Théorème 2: Théorème de Schwarz

Soit $f: \mathcal{D} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 sur \mathcal{D} .

Alors

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}.$$

Démonstration. Démonstration hors-programme.

Exemple 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^3y + y^2 + xy^4$.

Alors f est de classe C^2 sur \mathbb{R}^2 car polynomiale et on a pour tout $(x,y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial x}(x,y) = 3x^2y + y^4, \quad \frac{\partial f}{\partial y}(x,y) = x^3 + 2y + 4xy^3,$$

puis

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = 3x^2 + 4y^3 = \frac{\partial^2 f}{\partial x \partial y}(x, y).$$

On a également pour tout $(x, y) \in \mathbb{R}^2$,

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 6xy \quad \text{et} \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 2 + 12xy^2.$$

Remarque 9. Pour montrer qu'une fonction n'est pas de classe C^2 , il suffit donc de montrer que $\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$.

Exemple 8. Soit

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Puisque pour tout $x \in \mathbb{R}$, on a f(x,0)-f(0,0)=0, alors $\frac{\partial f}{\partial x}(0,0)=\lim_{x\to 0}\frac{f(x,0)-f(0,0)}{x-0}=0$. De même, puisque pour tout $y \in \mathbb{R}$, on a f(0,y)-f(0,0)=0, alors $\frac{\partial f}{\partial u}(0,0)=\lim_{u\to 0}\frac{f(0,y)-f(0,0)}{u-0}=0$.

Par ailleurs, on a d'une part, pour tout $y \neq 0$,

$$\frac{\partial f}{\partial x}(0,y) = \lim_{x \to 0} \frac{f(x,y) - f(0,y)}{x - 0} = \lim_{x \to 0} y \frac{x^2 - y^2}{x^2 + y^2} = -y$$

d'où

0.

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = -1.$$

D'autre part, pour tout $x \neq 0$,

$$\frac{\partial f}{\partial y}(x,0) = \lim_{y \to 0} \frac{f(x,y) - f(x,0)}{y - 0} = \lim_{y \to 0} x \frac{x^2 - y^2}{x^2 + y^2} = x$$

d'où

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = 1.$$

Ainsi, $\frac{\partial^2 f}{\partial y \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0)$ donc f n'est pas de classe \mathcal{C}^2 sur \mathbb{R}^2 .