Corrigé de la liste d'exercices n°22

Polynômes réels

Exercice 1. • Si P est le polynôme nul, alors la fonction $x \mapsto P(x)$ est à la fois paire et impaire et tous les cœfficients de P sont nuls.

 \bullet On suppose dornéavant que P n'est pas le polynôme nul.

Soit
$$n = \deg(P) \in \mathbb{N}$$
 et $P = \sum_{k=0}^{n} a_k X^k$, où $\forall k \in [0, n], a_k \in \mathbb{R}$.

Supposons que $x \mapsto P(x)$ est paire, i.e. pour tout réel x, P(x) = P(-x) d'où

$$\forall x \in \mathbb{R}, \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} a_k (-x)^k = \sum_{k=0}^{n} (-1)^k a_k x^k.$$

Par unicité de l'écriture d'un polynôme, on en déduit que pour tout $k \in [0, n]$, $a_k = (-1)^k a_k$, ce qui implique que si k est impair, $a_k = -a_k$ d'où $a_k = 0$.

Ainsi, si $x \mapsto P(x)$ est paire, tous les cœfficients d'indice impair de P sont nuls. L'autre cas se traite de manière analogue.

Exercice 2. • Il est clair que le polynôme nul vérifie la condition voulue.

• Supposons qu'il existe un polynôme $P \in \mathbb{R}[X]$ non nul tel que pour tout $x \in \mathbb{R}, P(2x) = P(x)$.

Soit
$$n = \deg(P) \in \mathbb{N}$$
 et $P = \sum_{k=0}^{n} a_k X^k$, ou $\forall k \in [0, n], a_k \in \mathbb{R}$.

On a alors

$$\forall x \in \mathbb{R}, P(2x) = P(x) \Leftrightarrow \forall x \in \mathbb{R}, \sum_{k=0}^{n} 2^{k} a_{k} x^{k} = \sum_{k=0}^{n} a_{k} x^{k}.$$

Par unicité de l'écriture d'un polynôme, ceci implique que pour tout $k \in [0, n], 2^k a_k = a_k$, i.e. $(2^k - 1)a_k = 0$.

Si $k \neq 0$, alors $2^k - 1 \neq 0$ donc pour tout $k \neq 0$, $a_k = 0$. Ainsi, $P = a_0$ est forcément constant.

• Réciproquement, tous les polynômes constants vérifient bien pour tout réel x, P(2x) = P(x). Finalement, les polynômes cherchés sont les polynômes constants.

Exercice 3.

1. On a pour tout $x \in \mathbb{R}$, $P'(x) = 6x^2 - 6 = 6(x - 1)(x + 1)$.

La fonction $x \mapsto P(x)$ admet donc le tableau de variation suivant :

x	$-\infty$		-1		1		$+\infty$
P'(x)		+	0	_	0	+	
P			<u> </u>		-3		+∞

Puisque P est continue, strictement croissante sur $]-\infty,-1[$ et que $0\in P(]-\infty,-1[)$, on déduit du théorème des valeurs intermédiaires que P admet une unique racine $\alpha\in]-\infty,-1[$.

On montre de même que P admet une unique racine $\beta \in]-1,1[$ et une unique racine $\gamma \in]1,+\infty[.$

2. Ainsi, pour tout $x \in \mathbb{R}$,

$$P(x) = 2(x - \alpha)(x - \beta)(x - \gamma) = 2x^3 - 2(\alpha + \beta + \gamma)x^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)x - \alpha\beta\gamma.$$

Par unicité des cœfficients d'un polynôme, on en déduit que $\alpha + \beta + \gamma = 0$ et que $\alpha\beta\gamma = -1$.

Exercice 4. Soit P un polynôme de $\mathbb{R}[X]$ tel que pour tout $n \in \mathbb{N}, P(n) = n^2$, i.e. pour tout $n \in \mathbb{N}, P(n) - n^2 = 0$.

Ainsi, le polynôme $P(X) - X^2$ admet une infinité de racines, ce qui assure que $P(X) - X^2 = 0$, d'où $P(X) = X^2$.

Exercice 5. Raisonnons par analyse-synthèse.

• Analyse : Soit $P \in \mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}, P(x^2) = (x^2 + 1)P(x)$.

Si P est constant égal à $a \in \mathbb{R}$, alors l'égalité pour x = 1 donne a = 2a d'où a = 0. Ainsi, le seul polynôme constant à vérifier cette condition est le polynôme nul.

Si P n'est pas un polynôme constant, soit $n = \deg(P) \in \mathbb{N}^*$ et $P = \sum_{k=0}^n a_k x^k$.

Pour tout $x \in \mathbb{R}$, $P(x^2) = \sum_{k=0}^{n} a_k x^{2k}$ donc le polynôme $P(X^2)$ est de degré 2n.

Par ailleurs, le polynôme $(X^2+1)P(X)$ est de degré n+2 donc on a nécessairement 2n=n+2 d'où n=2.

Ainsi, il existe $(a, b, c) \in \mathbb{R}^3$ tel que pour tout $x \in \mathbb{R}, P(x) = ax^2 + bx + c$.

La condition devient donc

$$\forall x \in \mathbb{R}, ax^{4} + bx^{2} + c = (x^{2} + 1)(ax^{2} + bx + c) \Leftrightarrow \forall x \in \mathbb{R}, ax^{4} + bx^{2} + c = ax^{4} + bx^{3} + (a + c)x^{2} + bx + c.$$

Par unicité des cœfficients d'un polynôme, on obtient :

$$\begin{cases} b = 0 \\ a+c = b \end{cases} \Leftrightarrow \begin{cases} b = 0 \\ c = -a \end{cases}$$

donc pour tout $x \in \mathbb{R}$, $P(x) = ax^2 - a = a(x^2 - 1)$ où $a \in \mathbb{R}$.

• Synthèse : Soit $a \in \mathbb{R}$, soit $P \in \mathbb{R}[X]$ tel que $P(X) = a(X^2 - 1)$.

Alors
$$(X^2 + 1)P(X) = a(X^2 + 1)(X^2 - 1) = a(X^4 - 1) = P(X^2)$$
.

Finalement, les polynômes cherchés sont les polynômes de la forme $P(X) = a(X^2 - 1)$, où $a \in \mathbb{R}$.

Exercice 6. Si $P \in \mathbb{R}[X]$ est un polynôme constant de période T, alors $P(\mathbb{R}) = P([0,T])$. Puisque P est continu et que [0,T] est un segment, d'après le théorème des bornes atteintes, on en déduit que P([0,T]) est un segment donc $P(\mathbb{R}) = P([0,T])$ est un segment, ce qui implique que P est borné.

Supposons par l'absurde que P n'est pas constant. Soit $n = \deg(P) \in \mathbb{N}^*$.

Alors $P(X) = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$ et $P(x) \underset{+\infty}{\sim} a_n x^n$ donc, puisque $n \neq 0$,

$$\lim_{x \to +\infty} P(x) = \begin{cases} +\infty & \text{si } a_n > 0 \\ -\infty & \text{si } a_n < 0 \end{cases},$$

ce qui contredit le fait que P est borné.

Nécessairement, si P est périodique, alors P est constant.

Exercice 7. • Si Q = 0, on a bien pour tout $x \in [a, b]$, P(x)Q(x) = R(x)Q(x).

• On suppose dorénavant que $Q \neq 0$. Alors Q s'annule au maximum un nombre fini de fois sur l'intervalle [a, b]. Notons x_1, \ldots, x_n les racines éventuelles de Q sur l'intervalle [a, b].

On a pour tout $x \in [a, b], Q(x)(P(x) - R(x)) = 0.$

Ainsi, pour tout $x \in [a, b] \setminus \{x_1, \dots, x_n\}, P(x) - R(x) = 0.$

Puisque a < b, l'intervalle [a,b] est infini donc l'ensemble $[a,b] \setminus \{x_1,\ldots,x_n\}$ est infini. Ainsi, le polynôme P-R s'annule une infinité de fois, ce qui implique que P-R est le polynôme nul, i.e. P=R.

Exercice 8.

1. Soit $i \in [0, n]$

Construisons un polynôme L_i de degré inférieur ou égal à n tel que pour tout $j \in [0, n] \setminus \{i\}, L_i(x_j) = 0$. Alors L_i est factorisable par $\prod_{\substack{j=1 \ j \neq i}} (X - x_j)$. Puisque ce produit est

de degré n et que $\deg(L_i) \leqslant n$, nécessairement L_i est de degré n et il existe un réel λ tel que $L_i = \lambda \prod_{\substack{j=1 \ j \neq i}}^i (X - x_j)$.

Par ailleurs, pour avoir $L_i(x_i) = 1$, il vient $1 = \lambda \prod_{\substack{j=1 \ j \neq i}}^i (x_i - x_j)$. Puisque les réels x_0, \dots, x_n

sont deux à deux distincts, on a pour tout $j \neq i, x_i - x_j \neq 0$ donc $\lambda = \prod_{\substack{j=1 \ j \neq i}}^i \frac{1}{x_i - x_j}$, ce

qui implique que
$$L_i = \prod_{\substack{j=1\\j\neq i}}^i \frac{X - x_j}{x_i - x_j}$$
.

On voit dès lors que le polynôme L_i est uniquement déterminé. Montrons-le néanmoins. Supposons qu'il existe un autre polynôme T_i de degré inférieur ou égal à n tel que $T_i(x_i) = 1$ et pour tout $j \neq i, T_i(x_j) = 0$.

Alors pour tout $k \in [0, n], (L_i - T_i)(x_k) = 0.$

Or, $\deg(L_i - T_i) \leq \max(\deg(L_i), \deg(T_i)) \leq n$ donc $L_i - T_i$ est un polynôme de degré inférieur ou égal à n admettant n+1 racines distinctes. Nécessairement, $L_i - T_i = 0$, i.e. $L_i = T_i$, ce qui assure l'unicité du polynôme L_i .

2. • Existence:

Posons $L = \sum_{k=0}^{n} a_k L_k$. Pusique pour tout $k \in [0, n], \deg(L_k) \leqslant n$, alors $\deg(L) \leqslant n$.

De plus, pour tout
$$i \in [0, n], L(x_i) = \sum_{k=0}^{n} a_k L_k(x_i) = \sum_{k=0}^{n} a_k \delta_{i,k} = a_i.$$

Le polynôme L convient donc.

• Unicité:

Supposons qu'il existe un autre polynôme $T \in \mathbb{R}[X]$ avec $\deg(T) \leq n$ tel que pour tout $i \in [0, n], T(x_i) = a_i$. Alors pour tout $i \in [0, n], (L - T)(x_i) = 0$ donc L - T est un polynôme de degré inférieur ou égal à n admettant n + 1 racines, ce qui prouve que L - T = 0, i.e. L = T.

Le polynôme $L = \sum_{k=0}^{n} a_k L_k$ est donc bien l'unique polynôme de degré inférieur ou égal à n tel que pour tout $i \in [0, n], L(x_i) = a$

Exercice 9.

On vérifie aisément que P(1) = 0 donc P est factorisable par X - 1 et on a pour tout $x \in \mathbb{R}$,

$$P(x) = (x-1)(x^4 - 2x^3 - x + 2).$$

De même, 1 est racine du polynôme $X^4 - 2X^3 - X + 2$ donc on peut de nouveau factoriser par x - 1:

$$P(x) = (x-1)(x-1)(x^3 - x^2 - x - 2).$$

On remarque que 2 est racine du polynôme X^3-X^2-X-2 donc

$$P(x) = (x-1)^{2}(x-2)(x^{2}+x+1).$$

Enfin, les racines de $X^2 + X + 1$ sont $j = e^{\frac{2i\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et $\bar{j} = e^{-\frac{2i\pi}{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$ donc $P(x) = (x-1)^{2}(x-2)(x-j)(x-\overline{j}).$

Exercice 10. Soit $P: x \mapsto ax^{n+1} + bx^n + 1$. Le polynôme P admet 1 comme racine double si et seulement si P(1) = P'(1) = 0 et $P''(1) \neq 0$.

On a pour tout $x \in \mathbb{R}$, $P'(x) = (n+1)ax^n + nbx^{n-1}$ et $P''(x) = n(n+1)ax^{n-1} + n(n-1)bx^{n-2}$ si $n \neq 1$ et P''(x) = 2a si $n \neq 1$.

• Si n = 1, 1 est racine double de P si et seulement si $\begin{cases} a+b+1 &= 0 \\ 2a+b &= 0 \\ 2a &\neq 0 \end{cases} \Leftrightarrow \begin{cases} a &= 1 \\ b &= -2 \end{cases}$

Pour n = 1, a = 1 et b = -2 on a bien $P(X) = X^2 - 2X + 1 = (X - 1)^2$.

• Si n > 1, 1 est racine double de P si et seulement si $\begin{cases} a + b + 1 &= 0 \\ (n+1)a + nb &= 0 \end{cases} \Leftrightarrow \begin{cases} a &= n \\ b &= -n - 1 \end{cases} \Leftrightarrow \begin{cases} a &= n \\ b &= -n - 1 \end{cases}$ Finalement, pour tout $n \in \mathbb{N}^*$ l'unique polynôme qui satisfait la condition youlue est

$$\begin{cases} a & = n \\ b & = -n - 1 \\ n^{2}(n+1) - n(n-1)(n+1) \neq 0 \end{cases} \Leftrightarrow \begin{cases} a & = n \\ b & = -n - 1 \\ n(n+1) \neq 0 \end{cases}$$

Finalement, pour tout $n \in \mathbb{N}^*$, l'unique polynôme qui satisfait la condition voulue est

$$P(X) = nX^{n+1} - (n+1)X^n + 1.$$

Exercice 11.

1. Soit α une racine multiple de P. Alors $P(\alpha) = P'(\alpha) = 0$.

Or,
$$P'(X) = 12X^2 - 32X - 19 = 12(X + \frac{1}{2})(X - \frac{19}{6})$$
.

Or, $P'(X) = 12X^2 - 32X - 19 = 12(X + \frac{1}{2})(X - \frac{19}{6})$. On constate que $\alpha = -\frac{1}{2}$ est racine de P' et de P donc $-\frac{1}{2}$ est racine double de P. Ainsi, P est factorisable par $4(X + \frac{1}{2})^2 = (2X + 1)^2$.

On obtient:

$$P(X) = (2X+1)(2X^2 - 9X - 5) = (2X+1)^2(X-5).$$

Les racines de P sont donc $-\frac{1}{2}$ (racine double) et 5 (racine simple).

2. On constate que -1 est racine de R donc

$$R(X) = (X+1)(X^2 - 8X + 15) = (X+1)(X-3)(X-5).$$

Les racines de R sont donc -1, 3 et 5.

On constate que 3 est racine de Q donc

$$Q(X) = (X-3)(X^2 - 6X + 8) = (X-3)(X-4)(X-2).$$

Les racines de Q sont donc 2, 3 et 4.

Exercice 12.

1. Soit $n \in \mathbb{N}^*$ (si n = 0, $P_0 = 1$). Supposons par l'absurde que P_n admette une racine multiple α .

Alors
$$P_n(\alpha) = P'_n(\alpha) = 0$$
. Or, $P'_n = P_{n-1}$ donc $P_n(\alpha) = P_{n-1}(\alpha) = 0$.

On en déduit que $P_n(\alpha) - P_{n-1}(\alpha) = 0$. Or, $P_n - P_{n-1} = \frac{X^n}{n!}$ donc $\frac{\alpha^n}{n!} = 0$, ce qui implique que $\alpha = 0$. Mais, pour tout $n \in \mathbb{N}, P_n(0) = 1 \neq 0$.

Ainsi, P_n n'admet pas de racine multiple.

2. Notons que pour tout $x \in \mathbb{R}_+, P_n(x) \ge 1 > 0$ donc les racines éventuelles de P_n sont strictement négatives.

Montrons par récurrence sur $n \in \mathbb{N}$ le résultat suivant : P_{2n} n'admet pas de racine réelle et P_{2n+1} admet une unique racine réelle.

- •Initialisation : Pour $n = 0, P_0 = 1$ n'admet pas de racine réelle et $P_1 = 1 + X$ admet une seule racine réelle : -1.
- •**Hérédité** : Soit $n \in \mathbb{N}$. Supposons la propriété vraie au rang n et montrons-la au rang n+1.

Montrons que P_{2n+2} n'admet pas de racine réelle.

On a pour tout $x \in \mathbb{R}$, $P'_{2n+2}(x) = P_{2n+1}(x)$. Par hypothèse de récurrence, P_{2n+1} admet une unique racine réelle $\alpha < 0$.

Par ailleurs, on a $\lim_{x\to-\infty} P_{2n+1}(x) = -\infty$, $\lim_{x\to+\infty} P_{2n+1}(x) = +\infty$, et $\lim_{x\to\pm\infty} P_{2n+2}(x) = +\infty$, ce qui nous fournit le tableau de variation suivant :

x	$-\infty$	α		$+\infty$
$P_{2n+1}(x)$	_	0	+	
P_{2n+2}	$+\infty$	$P_{2n+2}(\alpha)$, +∞

Or, $P_{2n+2}(\alpha) = P_{2n+1}(\alpha) + \frac{\alpha^{2n+2}}{(2n+2)!} = \frac{\alpha^{2n+2}}{(2n+2)!} > 0$ car $\alpha < 0$. On en déduit que P_{2n+2} n'admet pas de racine réelle et que pour tout $x \in \mathbb{R}, P_{2n+2} > 0$.

Il s'ensuit que pour tout $x \in \mathbb{R}$, $P'_{2n+3}(x) = P_{2n+2}(x) > 0$ donc la fonction $x \mapsto P_{2n+3}(x)$ est strictement croissante et continue sur \mathbb{R} avec $\lim_{x \to -\infty} P_{2n+3}(x) = -\infty$ et $\lim_{x \to +\infty} P_{2n+3}(x) = +\infty$.

D'après le théorème de la bijection, P_{2n+3} réalise une bijection de \mathbb{R} sur \mathbb{R} et a fortiori, P_{2n+3} s'annule une seule fois.

On a donc bien montré par récurrence que pour tout $n \in \mathbb{N}$, P_{2n} n'admet pas de racine réelle et P_{2n+1} admet une unique racine réelle.

Exercice 13.

1. Supposons que P est scindé à racines simples, i.e. $P(x) = a \prod_{k=1}^{p} (X - x_k)$, où $p = \deg(P)$.

Quitte à renuméroter les x_k , on peut supposer que $x_1 < \cdots < x_p$.

Pour tout $k \in [1, p-1]$, P est continu sur $[x_k, x_{k+1}]$, dérivable sur $]x_k, x_{k+1}[$ et $P(x_k) = P(x_{k+1}) = 0$.

D'après le théorème de Rolle, il existe un réel $\alpha_k \in]x_k, x_{k+1}[$ tel que $P'(\alpha_k) = 0$.

Ainsi, P' admet p-1 racines distinctes $\alpha_1 < \cdots < \alpha_{p-1}$ et est de degré p-1. On en déduit que P' est bien scindé à racines simples.

Remarque : le résultat n'est plus vrai sur $\mathbb{C}[X]$.

Le polynôme $P(X) = X^3 - 1 = (X - 1)(X - j)(X - \overline{j})$ est scindé à racines simples mais son polynôme dérivé $P'(X) = 3X^2$ ne l'est pas (0 est racine double).

2. Supposons que P est scindé, i.e. $P(x) = a \prod_{k=1}^{p} (X - x_k)^{m_k}$, avec $x_1 < \cdots < x_p$ et pour

tout
$$k \in [1, p], m_k \in \mathbb{N}^*$$
. On a alors $\deg(P) = \sum_{k=1}^p m_k \operatorname{donc} \deg(P') = \sum_{k=1}^p m_k - 1$.

La même preuve que celle en question précédente montre que P' admet p-1 racines distinctes $\alpha_1 < \cdots < \alpha_{p-1}$ telles que pour tout $k \in [1, p-1], \alpha_k \in]x_k, x_{k+1}[$.

Par ailleurs, pour tout $k \in [1, p]$, puisque x_k est racine de P d'ordre m_k , alors x_k est racine de P' d'ordre $m_k - 1$ (avec éventuellement $m_k - 1 = 0$).

Ainsi, P' est divisible par $\prod_{k=1}^{p-1} (X - \alpha_k) \prod_{k=1}^p (X - x_k)^{m_k - 1}$. Or, ce dernier polynôme est de

degré
$$p-1+\sum_{k=1}^{p}(m_k-1)=\sum_{k=1}^{p}m_k-p+p-1=\sum_{k=1}^{p}m_k-1=\deg(P').$$

Par égalité des degrés, on en déduit qu'il existe une constance $c \in \mathbb{R}^*$ telle que

$$P' = c \prod_{k=1}^{p-1} (X - \alpha_k) \prod_{k=1}^{p} (X - x_k)^{m_k - 1},$$

ce qui prouve que P' est scindé.

Remarque : Cette question n'a pas d'intérêt sur $\mathbb{C}[X]$ car tout polynôme de degré $\geqslant 1$ y est scindé (théorème de d'Alembert-Gauss).

Exercice 14.

- 1. Raisonnons par récurrence sur $n = \deg(P)$.
 - •Initialisation : Si n = 0, P est un polynôme constant et on a alors

$$P(X) = P(a) = \sum_{k=0}^{0} \frac{P^{(k)}(a)}{k!} (X - a)^{k},$$

donc la propriété est vraie au rang n=0.

•**Hérédité** : Soit $n \in \mathbb{N}$. Supposons la propriété vraie au rang n et montrons-la au rang n+1.

Soit $P \in \mathbb{R}[X]$ de degré n+1. Alors P' est de degré n donc par hypothèse de récurrence, on a pour tout $t \in \mathbb{R}$,

$$P'(t) = \sum_{k=0}^{n} \frac{P'^{(k)}(a)}{k!} (t-a)^k = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} (t-a)^k.$$

Soit $x \in \mathbb{R}$. En intégrant l'égalité qu'on vien d'obtenir entre a et x, on trouve :

$$\int_{a}^{x} P'(t)dt = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} \int_{a}^{x} (t-a)^{k} dt \Leftrightarrow P(x) - P(a) = \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{k!} \left[\frac{(t-a)^{k+1}}{k+1} \right]_{a}^{x}$$

d'où
$$P(x) = P(a) + \sum_{k=0}^{n} \frac{P^{(k+1)}(a)}{(k+1)!} (x-a)^{k+1} = \sum_{k=0}^{n+1} \frac{P^{(k)}(a)}{k!} (x-a)^{k}$$
, ce qui prouve la formule au rang $n+1$ et achève la récurrence.

- 2. Le sens direct a été vu en cours.
 - Réciproquement, supposons que pour tout $k \in [0, m-1]$, $P^{(k)}(a) = 0$ et $P^{(m)}(a) \neq 0$ (ce qui implique que $n \geq m$ car $P^{(n+1)} = 0$).

D'après la formule de Taylor établie à la question précédente, on a alors

$$P(X) = \sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = (X - a)^{m} \sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k-m}.$$

Posons
$$Q(X) = \sum_{k=m}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k-m}$$
.

On a alors $P(X) = (X - a)^m Q(X)$ avec $Q(a) = \frac{P^{(m)}(a)}{m!} \neq 0$ par hypothèse.

Par définition, ceci signifie que a est racine de P d'ordre m.

Exercice 15. • Si P = 0, alors P' = 0 divise P.

- Si P est un polynôme constant non nul, alors P'=0 ne divise pas P.
- Supposons désormais que P est un polynôme de degré $n \in \mathbb{N}^*$ tel que P' divise P. Puisque P' est de degré $n-1 \in \mathbb{N}$, il existe deux réels λ et a tels que $P(X) = \lambda(X-a)P'(X)$.

D'après la formule de Taylor établie dans l'exercice précédent, on a $P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X-a)^k$

et
$$P'(X) = \sum_{k=0}^{n-1} \frac{P'^{(k)}(a)}{k!} (X - a)^k = \sum_{k=0}^{n-1} \frac{P^{(k+1)}(a)}{k!} (X - a)^k.$$

On a alors

$$P(X) = \lambda(X - a)P'(X) \iff \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = \lambda \sum_{k=0}^{n-1} \frac{P^{(k+1)}(a)}{k!} (X - a)^{k+1}$$

$$\Leftrightarrow \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = \lambda \sum_{k=1}^{n} \frac{P^{(k)}(a)}{(k-1)!} (X - a)^{k}$$

$$\Leftrightarrow P(a) + \sum_{k=1}^{n} \frac{P^{(k)}(a)}{(k-1)!} \left(\frac{1}{k} - \lambda\right) (X - a)^{k} = 0.$$

Par unicité des cœfficients du polynôme nul, tous les cœfficients sont nuls, en particulier le cœfficient dominant, qui est $\frac{P^{(n)}(a)}{(n-1)!} \left(\frac{1}{n} - \lambda\right)$. Or, le polynôme $P^{(n)}$ est une constante non

nulle puisque P est de degré n, donc $P^{(n)}(a) \neq 0$. Nécessairement, cela implique que $\lambda = \frac{1}{n}$.

Il reste alors
$$P(a) + \sum_{k=1}^{n-1} \frac{P^{(k)}(a)}{(k-1)!} \left(\frac{1}{k} - \frac{1}{n}\right) (X-a)^k = 0.$$

En raisonnant de même, le cœfficient dominant de ce polynôme est nul, i.e. $\frac{P^{(n-1)}(a)}{(n-1)!} \left(\frac{1}{n-1} - \frac{1}{n}\right) = 0$, donc $P^{(n-1)}(a) = 0$ et par récurrence descendante, on obtient que pour tout $k \in [0, n-1]$, $P^{(k)}(a) = 0$.

Finalement $P(X) = \frac{P^{(n)}(a)}{n!}(X-a)^n$, c'est à dire P est de la forme $P = c(X-a)^n$, où $c \in \mathbb{R}^*$.

• Réciproquement, si P est de la forme $P = c(X-a)^n$, où a et c sont deux réels avec $c \in \mathbb{R}^*$

• Réciproquement, si P est de la forme $P = c(X - a)^n$, où a et c sont deux réels avec $c \in \mathbb{R}^*$ et $n \ge 1$, alors $P' = nc(X - a)^{n-1}$ et $P = \frac{1}{n}(X - a)P'$ donc P' divise bien P.

Finalement, les polynômes de $\mathbb{R}[X]$ divisibles par leur polynôme dérivé sont les polynômes de la forme $P = c(X - a)^n$ où $(a, c, n) \in \mathbb{R} \times \mathbb{R} \times \mathbb{N}^*$ (si c = 0, on retrouve le polynôme nul).

Exercice 16. Par hypothèse, il existe deux polynômes Q et R tels que

$$P = (X - a)Q + 1 = (X - b)R - 1.$$

Ceci implique que P(a) = 1 et P(b) = -1.

La division euclienne de P par (X-a)(X-b) s'écrit $P(X)=(X-a)(X-b)S(X)+\alpha X+\beta$, où $S\in\mathbb{R}[X]$ et $(\alpha,\beta)\in\mathbb{R}^2$.

En évaluant cette dernière égalité en a et en b, on trouve $P(a) = \alpha a + \beta$ et $P(b) = \alpha b + \beta$ d'où

$$\begin{cases} \alpha a + \beta &= 1 \\ \alpha b + \beta &= -1 \end{cases} \Leftrightarrow \begin{cases} \alpha &= \frac{2}{a-b} \\ \beta &= 1 - \frac{2a}{a-b} = -\frac{a+b}{a-b} \end{cases},$$

ce qui est possible car $a \neq b$.

Finalement, le reste dans la division euclidienne de P par (X-a)(X-b) est $\frac{1}{a-b}(2X-a-b)$.