Devoir maison n°8 A rendre pour le Mardi 7 Janvier 2025

Exercice 1 : Calcul de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$

On pose $a = \exp\left(\frac{2i\pi}{5}\right)$, $S = a + a^4$ et $T = a^2 + a^3$.

- 1. Montrer que $S = 2\cos\left(\frac{2\pi}{5}\right)$ et $T = 2\cos\left(\frac{4\pi}{5}\right)$.
- 2. Calculer S + T et ST.
- 3. En déduire un trinôme du second degré dont les racines sont S et T.
- 4. En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$ puis de $\sin\left(\frac{2\pi}{5}\right)$.

Exercice 2 : Une suite récurrente

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_0\in[0,1]$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=1-u_n^2$. Posons pour tout $x\in\mathbb{R}$, $f(x)=1-x^2$.

- 1. Montrer que la fonction f est décroissante sur [0,1] et que f([0,1]) = [0,1].
- 2. En déduire que pour tout $n \in \mathbb{N}, u_n \in [0, 1]$.
- 3. En utilisant la monotonie de $f \circ f$ sur [0,1], justifier que les deux suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones.
- 4. Montrer que $f \circ f$ admet trois points fixes sur [0,1]:0,1 et un réel $\alpha \in]0,1[$ à déterminer.
- 5. On suppose dans cette question que $u_0 = \alpha$. Montrer que la suite $(u_n)_{n \in \mathbb{N}}$ est constante égale à α .
- 6. On suppose dans cette question que $u_0 \in [0, \alpha[$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \in [0, \alpha[$ et que $(u_{2n})_{n \in \mathbb{N}}$ est décroissante. En déduire que $(u_{2n})_{n \in \mathbb{N}}$ converge et donner sa limite.
 - (b) Montrer que pour tout $n \in \mathbb{N}, u_{2n+1} \in]\alpha, 1]$ et que $(u_{2n+1})_{n \in \mathbb{N}}$ est croissante. En déduire que $(u_{2n+1})_{n \in \mathbb{N}}$ converge et donner sa limite.
 - (c) La suite $(u_n)_{n\in\mathbb{N}}$ est-elle convergente?
- 7. En s'inspirant de la question précédente, expliquer brièvement ce qui se passe lorsque $u_0 \in]\alpha, 1].$

Exercice 3 : Systèmes linéaires

Soient a, b, c et d quatre réels. A quelles conditions les systèmes suivants sont-ils compatibles? Donner les solutions de ces systèmes le cas échéant.

1.
$$\begin{cases} x + 2y - z = 3a \\ -2x - 3y + 3z = b \\ x + y - 2z = c \end{cases}$$
2.
$$\begin{cases} 2x + y + z = a \\ 2x + 13y - 7z = b \\ x - y + z = c \end{cases}$$

3.
$$\begin{cases} 3x + y + z + 2t = a \\ y - 2z + t = c \\ 2t = d \end{cases}$$