Devoir maison n°7 A rendre pour le Vendredi 20 Décembre 2024

Problème 1 : Irrationalité de e

Le but de ce problème est de prouver l'irrationalité de e, c'est à dire de montrer qu'il n'existe pas d'entiers $(p,q) \in (\mathbb{N}^*)^2$ tels que $e = \frac{p}{q}$.

Pour tout $n \in \mathbb{N}$, on pose $r_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.

- 1. Calculer les valeurs de r_0 et r_1 .
- 2. Montrer que pour tout $n \in \mathbb{N}$, on a

$$r_n = \frac{1}{(n+1)!} + r_{n+1}.$$

Indication : on pourra utiliser une intégration par parties.

3. En déduire que

$$\forall n \in \mathbb{N}, e = \sum_{k=0}^{n} \frac{1}{k!} + r_n.$$

- 4. (a) Montrer que pour tout $n \in \mathbb{N}, 0 \le r_n \le \frac{e}{n!}$. En déduire que la suite $(r_n)_{n \in \mathbb{N}}$ converge vers 0.
 - (b) On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!}.$$

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers e.

(c) On définit la suite $(v_n)_{n\in\mathbb{N}^*}$ par

$$\forall n \in \mathbb{N}^*, v_n = u_n + \frac{1}{nn!}.$$

Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

En déduire que

$$\forall n \in \mathbb{N}^*, u_n < e < v_n.$$

- 5. On suppose par l'absurde que e est rationnel, i.e. qu'il existe $(p,q) \in (\mathbb{N}^*)^2$ tels que $e = \frac{p}{q}$.
 - (a) Montrer que

$$q!u_q < q!e < q!u_q + \frac{1}{q}.$$

(b) Montrer que $q!u_q\in\mathbb{N}$ puis aboutir à une contradiction. Conclure.

Problème 2 : Autour du nombre d'or

Dans tout le problème, on note $\varphi=\frac{1+\sqrt{5}}{2}$ le nombre d'or et $\varphi'=\frac{1-\sqrt{5}}{2}$. On observera que $\varphi>1$ et $\varphi'\in]-1,0[$.

Le problème est constitué de deux parties indépendantes.

Partie I: Deux suites convergeant vers le nombre d'or

- 1. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$, où le nombre 1 apparaît n fois.
 - (a) Vérifier que $u_1 = 1$ et que pour tout $n \in \mathbb{N}^*, u_{n+1} = \sqrt{1 + u_n}$.
 - (b) Montrer que pour tout $n \in \mathbb{N}^*, u_n \in [1, \varphi]$.
 - (c) En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
 - (d) En conclure que $\lim_{n \to +\infty} u_n = \varphi$.
- 2. Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par $v_1=1$ et pour tout $n\in\mathbb{N}^*, v_{n+1}=1+\frac{1}{v_n}$.
 - (a) On pose pour tout $n \in \mathbb{N}^*$, $w_n = \frac{v_n \varphi}{v_n \varphi'}$. Justifier que la suite $(w_n)_{n \in \mathbb{N}^*}$ est bien définie, puis montrer que c'est une suite géométrique de raison $\frac{\varphi'}{\varphi}$. En déduire la limite de la suite $(w_n)_{n \in \mathbb{N}^*}$.
 - (b) Calculer $\lim_{n\to+\infty} v_n$.

Partie II : Suite de Fibonacci

On définit la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par $F_0=0, F_1=1$ et pour tout $n\in\mathbb{N}$,

$$F_{n+2} = F_{n+1} + F_n.$$

1. (a) Montrer que pour tout $n \in \mathbb{N}$, on a

$$F_n = \frac{1}{\sqrt{5}} (\varphi^n - \varphi'^n).$$

- (b) Montrer que $F_n \sim \frac{\varphi^n}{\sqrt{5}}$ et en déduire $\lim_{n \to +\infty} F_n$.
- 2. Dans cette question, on pose pour tout $n \in \mathbb{N}^*$, $q_n = \frac{F_{n+1}}{F_n}$.
 - (a) Donner un équivalent de la suite $(q_n)_{n\in\mathbb{N}^*}$ et en déduire qu'elle converge vers φ .
 - (b) Pour tout entier $n \in \mathbb{N}^*$, prouver qu'on a l'égalité $q_{n+1} q_n = \frac{(-1)^{n+1}}{F_n F_{n+1}}$. Indication : on pourra montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$F_n F_{n+1} + F_n^2 - F_{n+1}^2 = (-1)^{n+1}$$
.

- (c) Vérifier que les suites $(q_{2n})_{n\in\mathbb{N}^*}$ et $(q_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- (d) Calculer $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{F_k F_{k+1}}$.
- (e) Montrer que pour tout $n \in \mathbb{N}^*, q_n = v_n$ où $(v_n)_{n \in \mathbb{N}^*}$ est la suite introduite dans la Partie I.

- 3. Montrer que pour tout $n \in \mathbb{N}, F_n = \lfloor \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2} \rfloor$.
- 4. Le but de cette question est de trouver des relations entre F_n et F_{n+1} pour tout $n \in \mathbb{N}$ grâce aux propriétés du nombre d'or.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, on a $F_{n+1} = \varphi F_n + \varphi'^n$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, on a $\varphi^{n+1} = \varphi F_{n+1} + F_n$.
 - (c) Prouver que pour tout $n \in \mathbb{N}^*, F_{2n} = \lfloor \varphi F_{2n-1} \rfloor$ et $F_{2n+1} = \lfloor \varphi F_{2n} \rfloor + 1$.
 - (d) Déduire de la question 4.(a) que pour tout $n \ge 2$, $F_{n+1} = \lfloor \varphi F_n \varphi' \rfloor$.
 - (e) On pose pour tout $n \in \mathbb{N}$, $x_n = F_n + 1$. Montrer que pour tout $n \ge 2$, $x_{n+1} = \lfloor \varphi x_n \rfloor$.