Devoir maison n°14 A rendre pour le mardi 29 avril 2025

Exercice 1: Lieux communs

Soient les points suivants de l'espace A(1,2,-1) et B(-2,4,0). Pour tout $m \in \mathbb{R}$, soit \mathcal{D}_m la droite de représentation paramétrique

$$\begin{cases} x = 3 + \lambda \\ y = 2 - 2\lambda \\ z = m + 2\lambda \end{cases}, \lambda \in \mathbb{R}.$$

- 1. (a) Donner une représentation paramétrique de la droite (AB).
 - (b) Donner un système d'équations cartésiennes de la droite (AB).
- 2. Pour tout $m \in \mathbb{R}$, déterminer l'intersection des droites (AB) et \mathcal{D}_m .
- 3. Pour tout $m \in \mathbb{R}$ tel que les droites (AB) et \mathcal{D}_m s'intersectent, on considère le plan \mathcal{P}_m contenant les deux droites (AB) et \mathcal{D}_m .

Pour chacun de ces réels $m \in \mathbb{R}$, donner une équation cartésienne du plan \mathcal{P}_m .

Exercice 2 : Famille de plans

On se place dans l'espace $\mathbb{R}^3 = \{(x, y, z) \in \mathbb{R}^3\}$ muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$ où O est le point de l'espace de coordonnées (0, 0, 0) et $(\vec{i}, \vec{j}, \vec{k})$ désigne la base canonique de \mathbb{R}^3 . Considérons la droite \mathcal{D} d'équations cartésiennes

$$\begin{cases} y = z \\ x = 1 \end{cases}$$

Pour tout $m \in \mathbb{R}$, on considère le plan \mathcal{P}_m d'équation cartésienne

$$x + my - mz = 1.$$

- 1. Pour tout $m \in \mathbb{R}$, donner un vecteur $\vec{n_m}$ normal au plan \mathcal{P}_m .
- 2. Donner une représentation paramétrique de la droite \mathcal{D} .
- 3. Montrer que pour tout $m \in \mathbb{R}$, le plan \mathcal{P}_m contient la droite \mathcal{D} .
- 4. Montrer que $\bigcup_{m \in \mathbb{R}} \mathcal{P}_m = \{(x, y, z) \in \mathbb{R}^3 | x = 1 \text{ ou } y \neq z\}.$
- 5. (a) Pour tout $m \in \mathbb{R}$, déterminer le projeté orthogonal H_m du point O sur le plan \mathcal{P}_m .
 - (b) Pour tout $m \in \mathbb{R}$, en déduire la distance du point O au plan \mathcal{P}_m .