BCPST1 – TP D – G. Furelaud [2 – séance] 1/11

TP ST D

DEFORMATIONS

COURS: ST-D, ST-B, ST-C, ST-G, TP: ST-A2, TERRAIN

L'existence de contraintes au sein des formations rocheuses conduit à des déformations de ces dernières, qui peuvent être étudiées à différentes échelles :

- Microscopique (au microscope polarisant)
- Macroscopique (échelle de l'échantillon)
- A l'échelle de l'affleurement, ou dans le paysage
- A l'échelle de la région (par exemple avec des cartes, données satellitales...
- A l'échelle des plaques lithosphériques

Le but de ce TP est d'observer et d'interpréter des objets tectoniques à toutes les échelles.

Programme officiel:

Analyser des objets tectoniques à partir de différents supports à différentes échelles (cartes géologiques, photographies, échantillons).

Analyser des objets tectoniques, en termes d'ellipsoïde des déformations finies et, lorsque c'est possible, faire le lien avec le régime des contraintes

Analyser des microstructures associées aux structures d'échelle supérieure.

Analyser un style structural régional.

Savoir relier observations de terrain et déformation.

Compétences :

Caractériser des déformations et y associer, lorsque cela est possible, des contraintes : ellipsoïde des déformations et des contraintes. Exploiter des données utilisant des approches géophysiques :

Mécanisme au foyer, courbes rhéologiques

données GPS, interférométrie radar, corrélation optique

Analyser un paysage ou un affleurement.

Utiliser une carte géologique.

Réaliser une observation au microscope optique.

1. Les grands types de déformation : (1) déformations cassantes = discontinues

Voir poly 1 - préparation

2. Les grands types de déformation : (2) déformations continues = ductiles

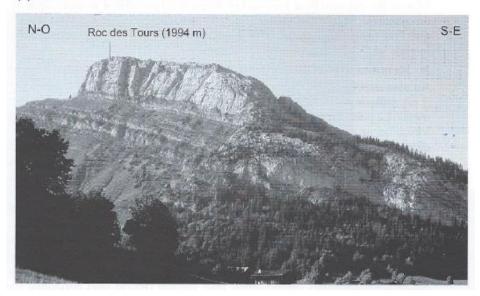
Voir poly 1 - préparation

3. Observations

3.1.Diversité des déformations

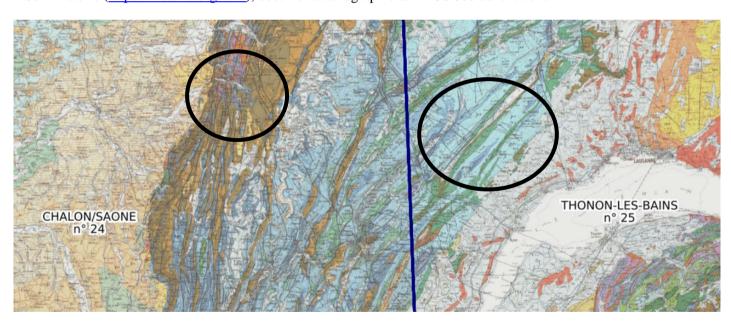
- → Vous disposez (en dernière page du polycopié) de photos d'objets déformés à différentes échelles. Découpez ces photos, et réalisez un classement raisonné de ces déformations, indépendamment de l'échelle.
 - 3.2. Observations d'échantillons
- **⊃** Caractériser les déformations des deux échantillons à votre disposition :
 - Schistes Gneiss oeillés.

3.3. Observation d'un paysage


Méthodologie d'une étude photographique :

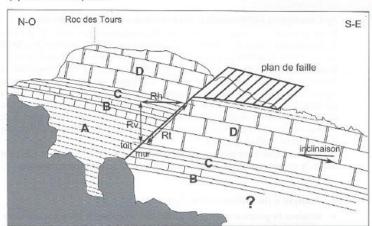
- 1) Dimension : Identifier l'échelle, et indiquer dans le texte la dimension des objets étudiés
- 2) Lithologie : Strates, épaisseurs, pendages, hypothèses sur la nature des roches
- 3) Déformations :
 - Décrire, pour la caractériser : ductile ou cassante, puis type de déformation
 - Préciser la nature de la déformation : type de pli, type de faille, etc.
 - Tracer l'ellipsoïde des déformations ; si possible, tracer l'ellipsoïde des contraintes
- 4) Conclusion : adapter la conclusion aux observations réalisées...

BCPST1 – TP D – G. Furelaud [2 - séance] 2/11

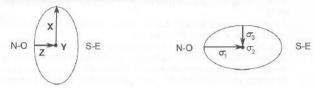

⇒ Etudier cette vue du Roc des Tours, dans les Alpes. *Correction page suivante*

3.4. Observations à l'échelle régionale

- **⊃** Observer la zone broyée sur-armoricaine sur la carte de France au 1/1 000 000
- ⇒ Sur Infoterre (http://infoterre.brgm.fr/), observe la cartographie au 1/250 000 dans le Jura :



→ Déterminer et comparer les déformations dans les deux zones (est et ouest) indiquées ci-dessus.


BCPST1 – TP D – G. Furelaud [2 – séance] 3/11

Correction paysage « Roc des Tours »

(b) Schéma interprétatif.

(c) Ellipsoïdes des déformations et des contraintes

Analyse d'un paysage (figure 1)

Repérez l'alternance entre bancs durs et tendres ainsi que les changements d'épaisseur des bancs

L'analyse qui suit est appuyée par un schéma interprétatif du panorama qui est construit durant le temps de préparation (figure 1b).

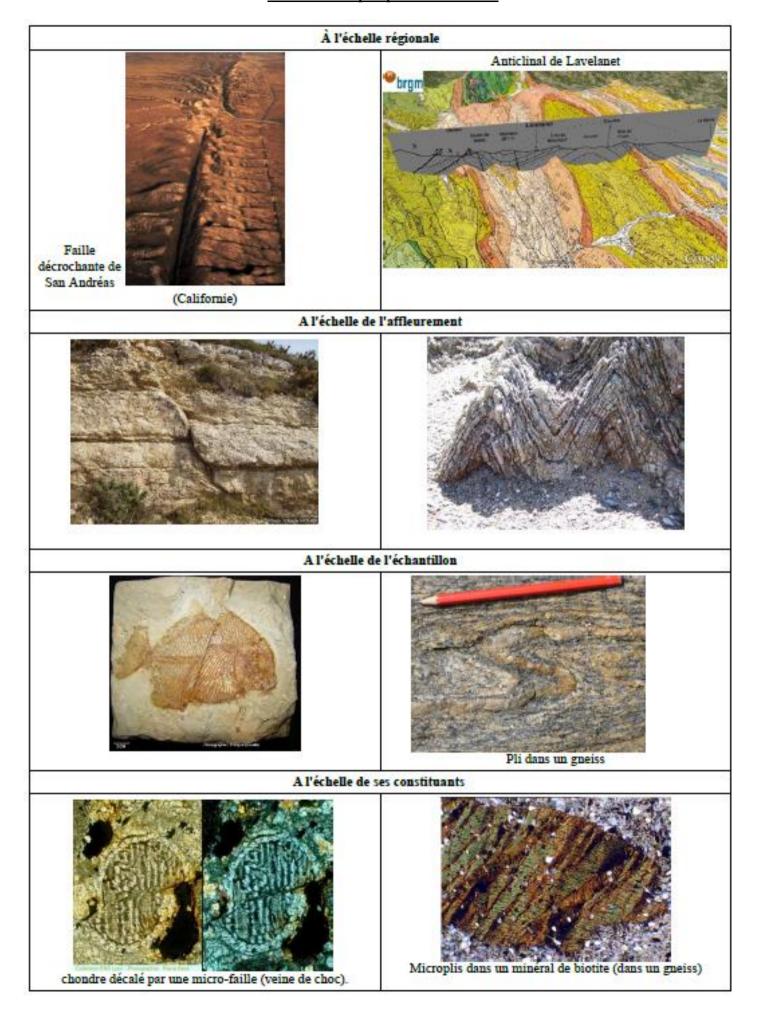
La vue générale de ce paysage (figure 1a) illustre le caractère stratifié des roches à l'affleurement et permet de conclure d'emblée qu'il s'agit d'un massif montagneux (de par l'altitude) formé de roches sédimentaires. Ces roches ont des compacités très différentes avec alternance de couches dures aux bancs parfois fort épais (unité D), aux reliefs escarpés, et des couches plus tendres aux pentes plus douces et généralement couvertes par la végétation (unités A et C). La succession des terrains dans le secteur occidental peut être schématisée par une superposition de 4 séquences notées de A à D avec accentuation progressive de la proportion de couches dures, finalement seules présentes dans l'unité D. En ce qui concerne

leur lithologie, les couches tendres, aux versants herbeux, sont très certainement des argilites ou des marnes. Pour les couches dures, il est possible d'avancer deux hypothèses, grès ou calcaires ; la physionomie de l'unité D aux reliefs très découpés, fissurés, à l'image de ce que l'on observe au niveau d'un karst, plaide en faveur des calcaires ; c'est l'hypothèse retenue ici.

➤ Identifiez le plan de faille et le mouvement relatif des 2 compartiments

Au plan structural, ces strates sont inclinées vers le S-E ; cette inclinaison est modeste mais il est difficile de l'évaluer précisément car la photo a été prise en contrebas des affleurements. Le point le plus remarquable est l'interruption des unités A à D du secteur occidental lorsqu'on se dirige vers le S-E ; cette interruption se fait selon une ligne oblique et on retrouve les unités de la séquence précédente au-delà de cette ligne mais plus bas (le couvert forestier important masque alors les unités inférieures). Nous sommes donc en présence d'un plan de faille de pendage N-O approximativement (la faille n'est en fait pas exactement orthogonale au plan de la photo puisqu'on peut la suivre légèrement dans l'arrière-plan) et d'inclinaison apparente de l'ordre de 45°, avec le compartiment occidental soulevé et le compartiment oriental affaissé.

Concluez à une faille inverse


Le toit de la faille correspondant au compartiment soulevé, on doit conclure à une faille inverse. Il est d'ailleurs possible d'identifier graphiquement (figure 1b) le rejet total (Rt) de celle-ci et deux de ses composantes, rejet vertical (Rv) et rejet horizontal transversal (Rh). Demeure une inconnue sur le possible rejet horizontal latéral de cette faille (fonctionnement en décrochement ?).

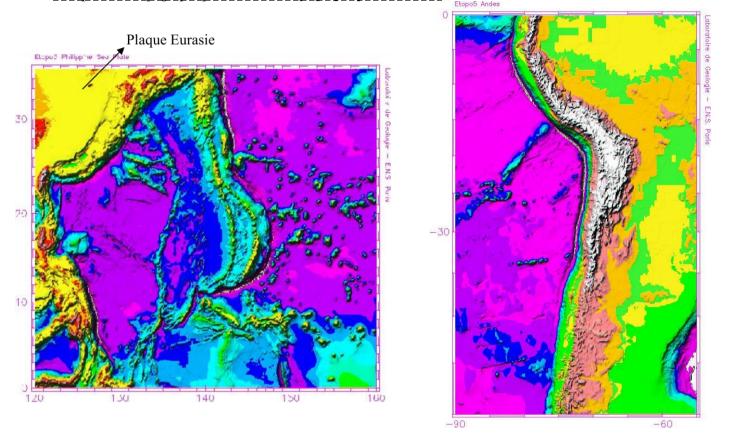
Construisez l'ellipsoïde des déformations et celui des contraintes

Il est attendu à ce stade de l'analyse l'identification des axes de déformations, axe X d'allongement, vertical ici, axe Z de raccourcissement horizontal et dans le plan de la photo soit de direction N-O/S-E, et axe Y de « non-déformation » horizontal et orthogonal à X soit de direction N-E/S-O. Cet ellipsoïde permet de conclure à une compression horizontale de direction N-O/S-E approximativement. L'absence de structures déversées suggère un régime de compression coaxial qui conduit à construire l'ellipsoïde des contraintes avec $\overrightarrow{\sigma_1}$ parallèle à Z, $\overrightarrow{\sigma_2}$ parallèle à Y et $\overrightarrow{\sigma_3}$ parallèle à X. La figure 1c visualise l'allure de ces deux ellipsoïdes dans un plan vertical d'orientation N-O/S-E qui est le plan de la photo. Cette orientation des contraintes se rencontre dans les massifs subalpins septentrionaux ainsi que dans la partie médiane du Jura.

Dernier caractère de ce paysage à souligner, sa morphologie conforme au mouvement tectonique, le compartiment soulevé étant le plus élevé au plan topographique. BCPST1 - TP D - G. Furelaud [2 - séance] 4/11

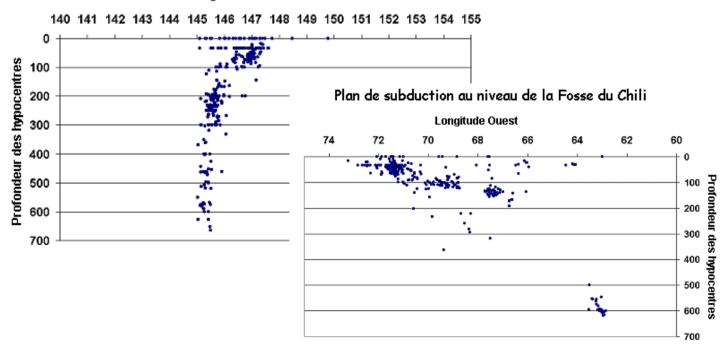
D'autres exemples pour s'entraîner :

BCPST1 – TP D – G. Furelaud [2 - séance] 5/11

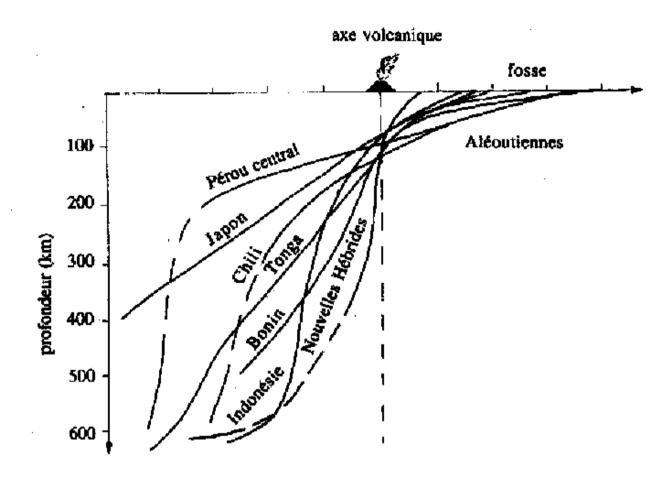

4. Une étude à l'échelle lithosphérique : la diversité des subductions

4.1.Rappel : des marqueurs de subduction, au niveau des marges océaniques actives

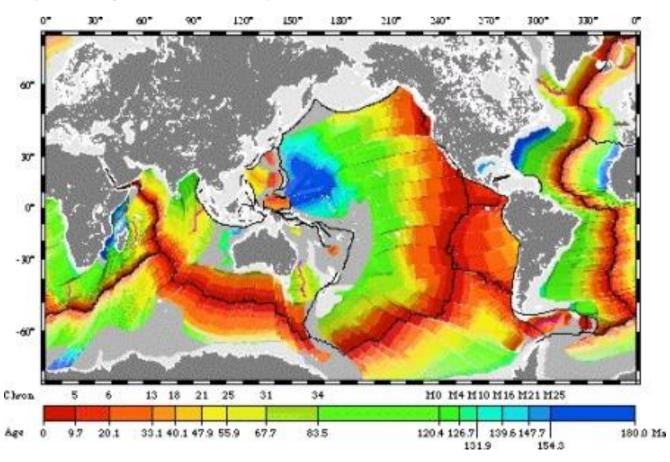
Voir poly 1 - préparation


4.2. Comparaison de la subduction chilienne et de la subduction des Mariannes

⇒ Comparaison topographique (voir carte topographique du monde)

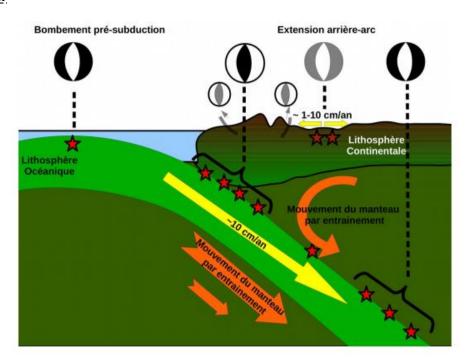

⇒ Comparaison sismique

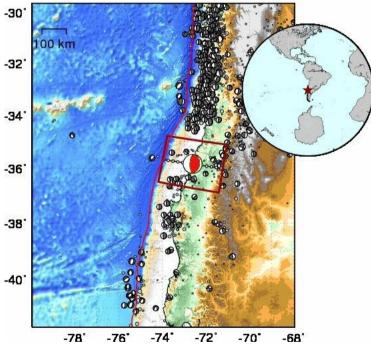
Plan de subduction au niveau de la Fosse des Mariannes Longitude Est

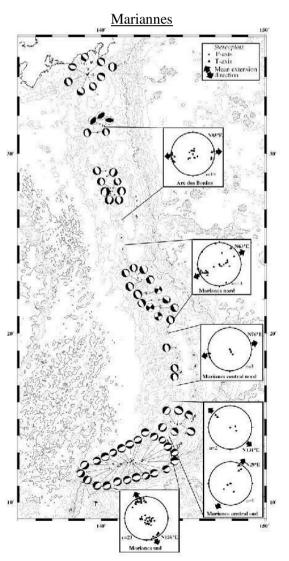


BCPST1 – TP D – G. Furelaud [2 - séance] 6/11

⇒ Comparaison du magmatisme

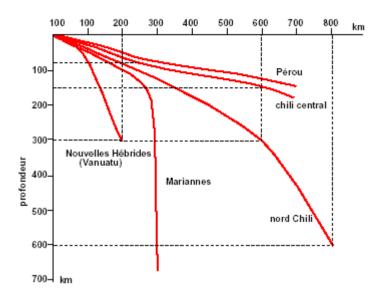

 ⇒ Ages des lithosphères (voir carte géologique du monde)

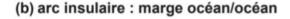

BCPST1 – TP D – G. Furelaud [2 - séance] 7/11

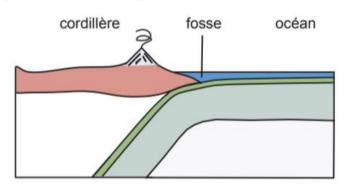

⇒ Observation de mécanismes au foyer

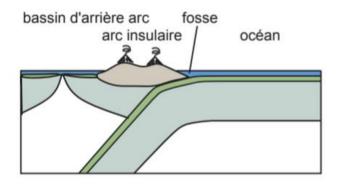
Ce qu'on sait : mécanismes au foyer attendus pour une subduction :

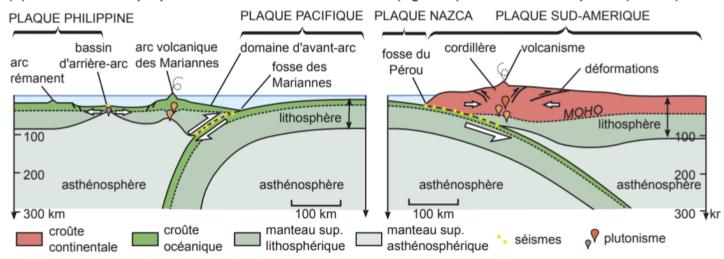
Chili (séisme du 27/02/2010 ; magnitude 8,8)




→ Comparer les deux subductions étudiées


BCPST1 – TP D – G. Furelaud [2 – séance] 8/11


4.3. Eléments de correction de la comparaison


(a) cordilière : marge océan/continent

(h) subduction avec plaque chevauchante en contexte extensif (à gauche) et en contexte compressif (à droite)

<u>Si on prend l'exemple de la subduction au niveau du Japon</u>, on peut ainsi observer qu'en allant de l'océan vers l'arc insulaire ou la marge active, on rencontre successivement :

- ⇒ Le plancher océanique de la plaque plongeante qui présente parfois un bombement de plusieurs centaines de mètres.
- ⇒ La <u>fosse océanique</u>. Elle fait quelques dizaines de kilomètres de large, peut atteindre plusieurs milliers de kilomètres de long mais elle est surtout caractérisée par sa profondeur dépassant généralement 8000 mètres. Elle constitue un relief négatif (c'est à dire sous le niveau de la mer) majeur qui matérialise la flexion de la plaque plongeante et signe (indique) ainsi la présence d'une zone de subduction. Une fosse océanique est dissymétrique, la pente côté océan étant toujours plus faible.
- ⇒ Le prisme d'accrétion. Il se trouve à cheval sur la limite des deux plaques et comble plus ou moins la fosse océanique. Il est constitué des couches sédimentaires, auparavant situées sur la lithosphère océanique, qui ont été entraînées vers la fosse lors de la subduction.

BCPST1 – TP D – G. Furelaud [2 – séance] 9/11

⇒ <u>L'arc magmatique</u>. Il existe toujours sur le bord de la plaque chevauchante des volcans actifs. Dans le cas d'un arc insulaire, ils constituent un chapelet d'îles volcaniques (Ouest du pacifique, Petites Antilles...). Par contre, lorsque la plaque chevauchante est continentale, les volcans sont portés par le continent et élevé en chaîne de montagnes (Andes...). L'arc magmatique constitue un relief positif (au dessus du niveau de la mer), témoin d'une zone de subduction.

⇒ Le <u>bassin arrière-arc</u>. Lorsqu'il existe, il se trouve au delà de l'arc insulaire et porte d'épais sédiments.

On trouve dans les zones de subduction des séismes qui présentent des caractéristiques particulières:

- Ils peuvent avoir lieu à des profondeurs inhabituelles qui atteignent 700 km.
- La répartition des foyers sismiques n'est pas quelconque, ils se distribuent à des profondeurs croissantes lorsqu'on s'éloigne de la fosse et de l'océan et déterminent une surface inclinée de 20° à 90° appelée **plan de Benioff** (ou plan de Wadati-Benioff).

La distribution des séismes et donc le plan de Benioff, matérialise la plaque océanique qui plonge dans le manteau. Cette plaque est soumise aux contraintes de compression liées à la subduction et elle demeure suffisamment rigide pour se fracturer.

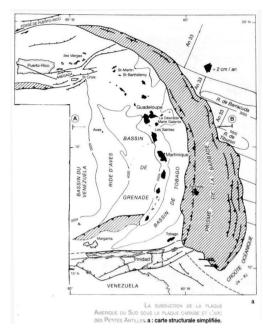
Les séismes sont principalement dus aux <u>frottements</u> le long de la zone interplaque et à la <u>déformation interne de la plaque</u> <u>plongeante</u> et de la plaque chevauchante.

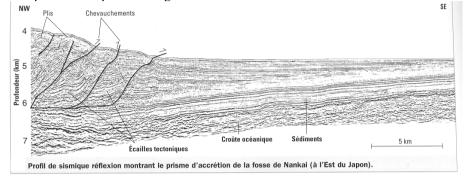
Il existe d'autres séismes près de la surface, mais localisés dans la plaque chevauchante. Ils sont liés à l'activité volcanique.

Les variations de la vitesse des ondes P montrent que la propagation des ondes P est plus rapide que dans le manteau environnant. La température y est plus faible : il s'agit de la croûte continentale plongeante plus froide et plus rigide que le manteau environnant. La répartition des séismes et les anomalies de vitesse des ondes sismiques confirment l'enfoncement d'une plaque froide, rigide, au sein d'un matériel plus chaud ainsi que la présence d'une zone plus chaude à l'aplomb des volcans (chambres magmatiques).

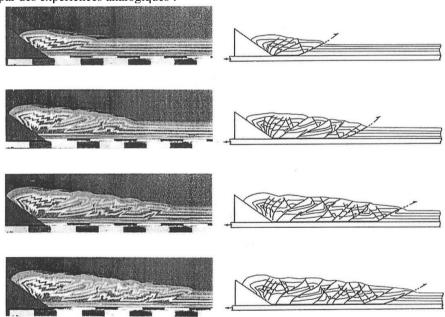
Géométrie du plan de Benioff : minimum de 20° au Chili jusqu'au maximum de 90° pour la fosse des Mariannes.

Bassins d'arrière-arc :

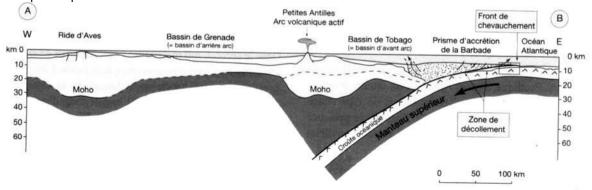

Les bassins d'arrière-arc montrent de manière générale un contexte distensif, ce qui peut conduire dans certains à une océanisation (cas du Japon par exemple).


Prismes d'accrétion:

BCPST1 – TP D – G. Furelaud [2 – séance] 10/11


On observe, au niveau de la fosse de subduction, un prisme d'accrétion des sédiments océaniques. Ce prisme est plus ou moins développé. En particulier, il est plus développé dans le cas d'une subduction forcée, et dans le cas d'une couverture sédimentaire particulièrement épaisse. On peut ainsi observer un prisme particulièrement développé dans le cas de la subduction antillaise : le prisme de la Barbade.

Interprétation du profil au large de la Barbade :



Ce modèle est confirmé par des expériences analogiques :



Expérience analogique simulant la formation d'un prisme d'accrétion. Le sable représente les sédiments présents dans la fosse. Il repose sur un film plastique tiré vers la butée rigide située à gauche. Au fur et à mesure de la convergence, le prisme se développe vers l'avant (la droite) par incorporation de nouvelles unités (écailles) et rétrocharriage des unités anciennes le long de la butée. d'après Lallemand et al. (1992b).

Conclusion : coupe interprétative au niveau de l'arc antillais :

BCPST1 - TP D - G. Furelaud [2 - séance] 11/11

