BCPST1 – TP A2 – G. Furelaud  $[2 - \text{séance}] \frac{1}{6}$ 

TP SV A2

# UN VERTEBRE TELEOSTEEN

COURS: SV-B-1. SV-A-1



Les Vertébrés Téléostéens constituent une part importante des poissons. Leur étude permet :

- Une comparaison avec des organismes présentant des plans d'organisation différents (Criquet, Moule)
- Une étude de l'adaptation au milieu aquatique, en particulier par comparaison avec la Souris et la Vache, Vertébrés Tétrapodes, et la Moule (autre animal aquatique).

L'objectif de ce TP est l'observation du plan d'organisation d'un Téléostéen, de son adaptation à son milieu de vie et à la réalisation de ses fonctions biologiques, et en particulier de la respiration (en comparaison avec les autres dissections au programme).

#### Programme officiel:

Réaliser l'observation morphologique et la dissection d'un Vertébré Téléostéen

Utiliser des caractéristiques morpho-anatomiques pour déterminer la position systématique de l'animal

Mettre en lien les observations avec les fonctions de relation, nutrition et reproduction

Comparer l'organisation morpho-anatomique des différents Métazoaires étudiés (organes homologues ou convergents)

Formuler des hypothèses sur les adaptations au milieu de vie

Vertébré Téléostéen : appareils digestif, cardiovasculaire, respiratoire et reproducteur

A partir des dissections [...] de Téléostéen :

Dégager les grands traits de l'organisation des surfaces d'échange respiratoires

Relier les structures observables avec les modalités de renouvellement des fluides de part et d'autre des surfaces respiratoires observées

Mettre en relation l'organisation des surfaces observées et les paramètres du milieu

Repérer les homologies et les convergences dans l'organisation de ces différentes structures

A partir de l'observation de préparation microscopiques ou de clichés d'histologie : identifier les caractéristiques structurales, à toutes les échelles, qui optimisent les échanges gazeux dans ces structures respiratoires

#### Compétences:

Réaliser une préparation de microscopie optique

Réaliser une observation en microscopie optique : objectifs et grossissement, intensité lumineuse, diaphragme, mise au point

Réaliser un dessin d'observation avec les conventions usuelles : fidélité, sélection des structures pertinentes, légendes, titre, échelle, orientations

Réaliser une dissection animale :

Mise en valeur d'un organe et de ses liens anatomiques avec d'autres organes, en les dégageant des structures les masquant Orientation de l'animal et positionnement des légendes

Prélèvement de parties d'appareils ou d'organes et observation avec les outils les plus adaptés

Exploiter des données morpho-anatomiques pour positionner un organisme dans un arbre phylogénétique

# 1. Classification des poissons Téléostéens

Voir poly 1 - préparation

## 2. Etude morphologique générale (planche I + planche IV pour les branchies)

## Voir poly 1 - préparation

- → Observer la morphologie extérieure du poisson Téléostéen. Repérer la symétrie bilatérale, les organes sensoriels. Repérer les éléments liés à la classification observables en vue externe.
- **⊃** Prélever et observer à la loupe binoculaire une écaille dermique.

> Ouvrir la bouche du Téléostéen et introduire délicatement la sonde cannelée (par exemple) afin de visualiser le trajet de l'eau depuis la bouche jusqu'aux opercules.

- **⊃** Observer les cavités buccale et branchiales.
  - 3. Etude anatomique : cavité générale (planches II)
  - 3.1. Dissection générale

BCPST1 – TP A2 – G. Furelaud [2 - séance] 2/6

#### Incisions cutanées et musculaires

- Tenir le poisson dans la main gauche, la tête en avant. Faire une boutonnière aux ciseaux <u>an avant</u> de la papille ano-génito-urinaire (0,5 cm). Glisser la pointe des ciseaux dans la boutonnière.
- En suivant la ligne médiane, couper la peau et les muscle jusqu'à la bouche. (Vous pouvez utiliser la sonde cannelée pour ne couper que la peau et les muscles, sans risque de léser les organes sous-jacents, surtout dans la région antérieure où se trouvent l'aorte et le cœur).
- Remonter l'incision latéralement juste <u>en arrière</u> de l'opercule (il est donc épargné par vos coups de ciseaux !).
- En suivant la ligne latérale, remonter en arrière du corps pour vous arrêter à la hauteur de la papille ano-génito-urinaire.
- Rejoindre l'incision initiale en prenant soin d'éviter la papille.
- Ecarter les volets obtenus en prenant soin de soulever peau et muscle et décoller les organes sous-jacents avant de couper.
- Epingler au liège de la cuvette et recouvrir d'eau.
- Découper l'opercule en suivant les pointillés en restant très superficiel afin de ne pas léser les branchies.

# 3.2. Appareils digestif, urinaire et génital (planche II)

# > Appareil digestif:

- Œsophage: tube court d'où part dorsalement le canal pneumatique
- Estomac : il possède deux branches séparées par un coude
- Intestin : court, il présente dans sa partie antérieure de nombreux diverticules pyloriques (ou caeca pyloriques, qui permettent un augmentation de la surface d'absorption)
- Pancréas : diffus et non discernable du tissu adipeux
- Foie : volumineux, formé d'un seul lobe, il recouvre l'œsophage et une partie de l'estomac. La vésicule biliaire se déverse au niveau du pylore par le canal cholédoque

## On trouve aussi, associés au tube digestif:

- La rate (languette triangulaire rouge sombre, proche de l'estomac)
- Chez la Sardine : La **vessie gazeuse** (ou vessie natatoire) : il s'agit d'une poche remplie d'un mélange gazeux plus riche en dioxygène que l'air atmosphérique. Ce contenu gazeux, formé par sécrétion à partir du sang, permete un rôle hydrostatique : en variant la densité du corps elle permet au poisson de se maintenir à des profondeurs variables. Elle est absente chez le Maquereau. Chez la Sardine, elle est relié à l'estomac par le canal pneumatique.

# Appareil excréteur = urinaire : (sa mise en évidence n'est pas au programme de BCPST)

- 2 reins adhérents sur toute leur longueur à la paroi abdominale dorsale
- 2 uretères, qui fusionnent en un canal unique élargie formant une vessie (réduite) qui débouche sur l'extérieur par le pore urinaire

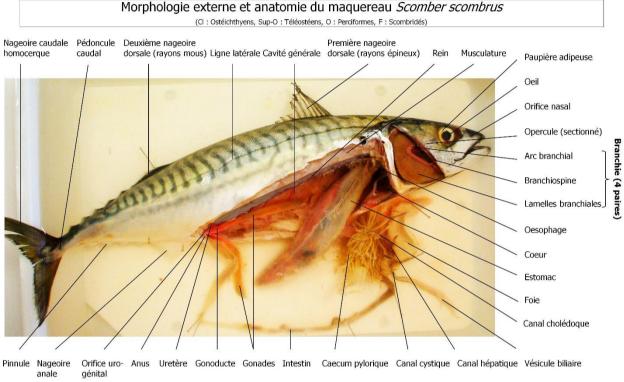
# ➤ Appareil génital :

Ovaires ou testicules sont des organes allongés, situés sur la vessie gazeuse et d'aspects variables.

Les testicules sont en général d'un aspect lisse et homogène, et présentent un contenu laiteux (la laitance = sperme). Les ovaires sont d'un aspect granuleux (de par la présence de très nombreux ovocytes).

Les deux gonoductes sont courts et fusionnent en un canal unique qui débouche dans le pore génital.

## Dissection des appareils digestif et génital


- Dérouler le tube digestif, en préservant le canal cholédoque (entre la vésicule biliaire et l'intestin). Le dérouler au maximum, sur un côté.
- Détacher soigneusement la vessie natatoire de l'appareil urinaire (attention, fragile : utiliser uniquement les grosses pinces ou le dos de la sonde cannelée !). La rabattre du côté opposé au tube digestif.
- Ecarter les gonades des deux côtés.

BCPST1 – TP A2 – G. Furelaud [2 - séance] 3/6

Etape intermédiaire : on dégage l'ensemble foie et vésicule biliaire, afin de pouvoir dérouler l'intestin sans rompre le canal cholédoque >

Exemple de dissection ↓

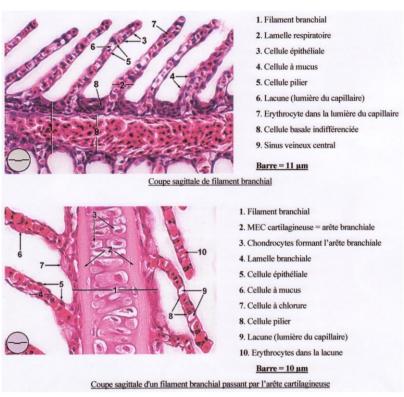




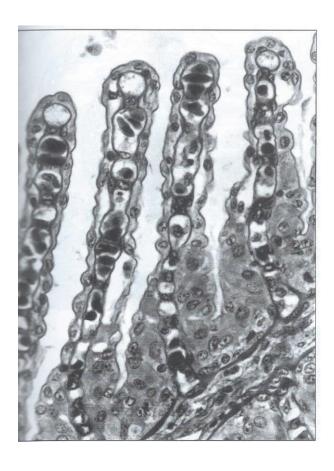
### 4. Le système cardiovasculaire (planche III)

### Voir poly 1 - préparation

### Dissection du cœur et d'un arc aortique


- Placer l'animal sur le dos et le fixer à la cuvette Si l'ouverture n'a pas encore été réalisée :
  - Inciser la paroi abdominale 1/2 cm en avant de l'anus et pratiquer une incision longitudinale sur la ligne médiane ventrale, jusqu'à l'extrémité antérieure des fentes operculaires, en protégeant les organes sous-jacents avec la sonde cannelée (attention au cœur et aux vaisseaux dans cette région)
  - Raccorder par 2 très courtes incisions transversales l'incision médiane aux cinquième fentes branchiales.
  - Ecarter doucement les volets ainsi délimités ; détacher le septum péricardiopéritonéal de la paroi ventrale. Faire très attention au sinus veineux.
  - Fixer les 2 volets latéraux avec des épingles
  - Ecarter et épingler les opercules. Couvrir d'eau
- Dans la partie antérieure, dégager progressivement l'aorte ventrale et les arcs aortiques en partant du bulbe artériel.
- Enlever le péricarde avec soin. Attention au sinus veineux et aux canaux de Cuvier.

# 5. <u>Le système respiratoire</u> (planche IV)


BCPST1 – TP A2 – G. Furelaud [2 - séance] 4/6

# **APPAREIL RESPIRATOIRE: BRANCHIES**

# **Observations microscopiques:**







BCPST1 – TP A2 – G. Furelaud [2 - séance] 5/6

## POISSONS TELEOSTEENS

# Réalisation des principales fonctions biologiques en relation avec le milieu de vie

#### I. Fonctions de la vie de relation

#### A. <u>Le tégument : enveloppe corporelle superficielle qui assure la protection</u>

- Formé d'un épiderme pluristratifié au contact avec le milieu extracellulaire, renfermant des cellules à mucus dont la sécrétion constitue une couche superficielle protectrice (mécanique et chimique). Ce mucus favorise la progression de l'animal dans l'eau.
- > Sous l'épiderme, on trouve un **derme**, tissu conjonctif riche en collagène. Les **écailles élasmoïdes** (= souples) et **cycloïdes** (= plus ou moins circulaires, à bords lisses) proviennent du derme. Ce sont de petites lamelles résistantes mais souples, formées d'une trame organique imprégnée de phosphate de calcium. Elles sont **protectrices** et **facilitent la progression** de l'animal dans l'eau.

## B. <u>Le squelette : endosquelette ossifié, typique des Vertébrés, qui assure le soutien du corps et permet la locomotion = la nage</u> > On distingue :

- Un **squelette céphalique** : d'origine et de structure complexe, avec présence de replis symétriques : les **opercules**, délimitant les cavités branchiales, protégeant les branchies et s'ouvrant vers l'arrière par l'ouïe d'où sortira le courant d'eau.
- Un **squelette axial** : colonne vertébrale, différenciée en deux régions : troncale et caudale, avec des vertèbres ossifiées sur lesquelles s'appuient les côtes et les arêtes.
- Un squelette appendiculaire : éléments de soutien des nageoires.
- Un **squelette zonal**: les ceintures pectorales et pelviennes, qui relient les nageoires paires (du squelette appendiculaire) au squelette axial.
- ➤ La locomotion (la nage) est facilitée par un milieu porteur mais de pénétration difficile (forte poussée d'Archimède). La forme hydrodynamique de l'animal et la présence du mucus améliore la glisse de l'animal. La présence d'une vessie gazeuse à rôle hydrostatique permet le contrôle de la position en profondeur.

La propulsion est assurée par la musculature de la queue assurant une ondulation du corps. Les nageoires paires se comportent comme des balanciers et interviennent dans la stabilité.

#### C. Perception du milieu de vie (organes de sens) et intégration

- Yeux : sans paupières ; le cristallin sphérique n'est que peu accomodable.
- > Oreille interne : organe stato-acoustique, qui intervient surtout dans 'équilibration et peu dans l'audition.
- > Organes olfactifs : logés dans des sacs olfactifs communiquant avec le milieu extérieur par les narines externes. Les cellules olfactives sont sensibles à certaines substances chimiques dissoutes, et sont reliées à une fibre nerveuse aboutissant dans le bulbe olfactif.
- ➤ Le système de la ligne latérale : ensemble de récepteurs sensoriels regroupés en amas (les neuromastes), reliés à un nerf latéral. Il permet la perception des variations de pression dans l'environnement liquide.
- Le système nerveux est formé d'un encéphale prolongé par une moelle épinière, d'où partent de chaque côté les nerfs rachidiens.

### II. Fonctions de la vie de nutrition

#### A. Alimentation et digestion

Le régime alimentaire est variable selon les Téléostéens. Par exemple le Gardon ou la Truite se nourrissent de végétaux et de petits animaux aquatiques (vers, larves, petits crustacés... la teneur en crevettes dans l'alimentation de la Truite, par exemple, conditionne la teinte rosée de sa chair). La Carpe se nourrit de larves d'insectes, de vers, d'écrevisses et présente une prédilection pour les moules d'eau douce (les Anodontes).

Le tube digestif débute par la bouche et se poursuit par le pharynx, percé par les fentes branchiales. Il se pousuit par un œsophage, un estomac (parfois non différencié) et d'un intestin qui se termine par le rectum et l'anus. Le foie est souvent peu différencié et le pancréas très diffus.

La vessie natatoire communique avec l'œsophage par le canal pneumatique, mais ne présente aucun rôle digestif.

### B. La respiration

L'oxygène, dissous et peu abondant en milieu aquatique, diffuse au niveau des branchies qui constituent un échangeur respiratoire avec le sang.

Les branchies sont divisées en hémibranchies, puis en lames et lamelles branchiales vascularisées. Les échanges sont réalisés au niveau des lamelles branchiales, qui présentent une grande surface et une épaisseur faible.

L'eau suit un courant unidirectionnel (en relation avec la forte densité du milieu), entrant par la bouche et sortant par les ouïes.

### C. La circulation

L'appareil circulatoire sert, comme chez tous les Vertébrés, d'intermédiaire entre l'appareil respiratoire et les cellules.

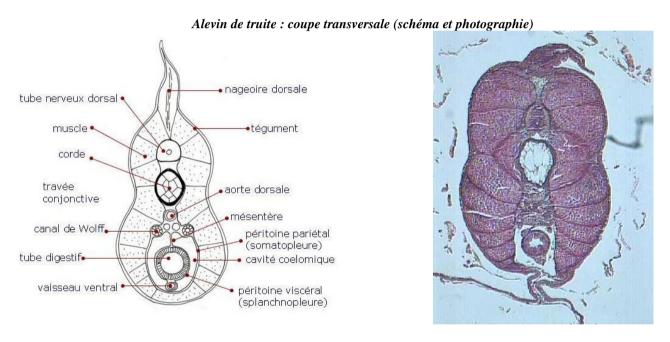
Le cœur est situé très avant, veineux (traversé uniquement par du sang chargé de CO2 et pauvre en dioxygène) et présente un sinus veineux, une oreillette, un ventricule musculeux et un bulbe artériel.

BCPST1 – TP A2 – G. Furelaud [2 - séance] 6/6

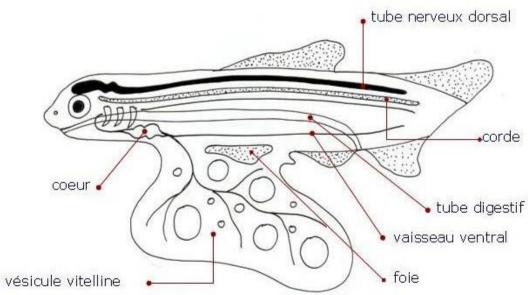
Le sang désoxygéné en provenance de divers organes du corps est envoyé par les contractions cardiaques vers l'aorte ventrale qui le conduit aux arcs branchiaux, où il sera hématosé (= chargé en dioxygène). A la sortie des branchies, le sang est acheminé vers les organes et vers l'encéphale (*via* les carotides).

La circulation sanguine est dite simple, formée d'une seule boucle circulatoire.

#### D. L'excrétion


Les deux reins réalisent l'excrétion azotée sous forme d'ammoniaque (NH3), substance toxique mais qui peut être diluée facilement en milieu aquatique, l'eau étant très disponible. → animaux ammoniotéliques.

### III. Fonctions de la vie de reproduction


Les gonades paires se prolongent par des conduits qui fusionnent et s'ouvrent au niveau de la papille.

Les gamètes sont produits en très grand nombre (car pertes nombreuses dans le milieu aquatique) et sont émis dans l'eau et la fécondation est externe. Le rapprochement des partenaires et la synchronisation de l'émission des gamètes compensent les aléas de ce mode de fécondation.

Le développement s'effectue sous la forme d'un alevin qui puise ses réserves dans les réserves initiales de l'ovule, grâce à une vésicule vitelline qui assure leur prélèvement. L'alevin se développe en jeune, qui subit une croissance importante et aboutit au stade adulte.



Alevin de truite : schéma en coupe longitudinale

